If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2=169
We move all terms to the left:
m^2-(169)=0
a = 1; b = 0; c = -169;
Δ = b2-4ac
Δ = 02-4·1·(-169)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-26}{2*1}=\frac{-26}{2} =-13 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+26}{2*1}=\frac{26}{2} =13 $
| 4=2(v+1) | | 9g=5+8g | | 8.1+3.8h–5.6h=−7. | | 60°=(3x-12)° | | -5v-10=-95 | | 2=15x-19 | | -3=4k+1=33 | | 4(v+1/4)=171/2 | | (3a+12)/9=0 | | 5(x+7)-2(x-4)x=2 | | 5x-11x+12=18 | | 4.3t–2.1t–2.3=7.6 | | w=56/(2^2+3 | | 1=13x+1 | | |3x|=33 | | 10x+20+43=183 | | 4n+11=17 | | 18=-2+2n | | a21+57=214 | | 5.50x-20=3.50 | | -8(8x-6)=-19+3x | | 3/7w-11=-4/5w | | 4x-15+25=120 | | 2f-5+4f-18+f=180 | | 3x-4+4x-18=90 | | 8-2(x+3)=16 | | 7h-7h+6h-2=4 | | 2x+18+4x+11+55=180 | | 3(6-f)-1=3f-1 | | -16=x-19 | | -5(5x+3)-5x+5=50 | | 4x=8x+9 |